Math 55 Discussion problems 28 Mar

1. Show that if m is a positive integer, then the probability that the $m^{\text {th }}$ success occurs on the $(m+n)^{t h}$ trial when independent Bernoulli trials, each with probability p of success, are run, is $\binom{n+m-1}{n} q^{n} p^{m}$.
2. Suppose that we roll a fair die until a 6 comes up.
(a) What is the probability that we roll the die n times?
(b) What is the expected number of times we roll the die?
3. Let X and Y be the random variables that count the number of heads and the number of tails that come up when two fair coins are flipped. Show that X and Y are not independent.
4. Show that if $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent random variables, then $E\left(\prod_{i=1}^{n} X_{i}\right)=$ $\prod_{i=1}^{n} E\left(X_{i}\right)$.
5. Let $X(s)$ be a random variable, where $X(s)$ is a nonnegative integer for all $s \in S$, and let A_{k} be the event that $X(s) \geq k$. Show that $E(X)=\sum_{k=1}^{\infty} p\left(A_{k}\right)$.
6. Suppose that n balls are tossed into b bins so that each ball is equally likely to fall into any of the bins and that the tosses are independent.
(a) Find the probability that a particular ball lands in a specified bin.
(b) What is the expected number of balls that land in a particular bin?
(c) What is the expected number of balls tossed until a particular bin contains a ball?
(d) What is the expected number of balls tossed until all bins contain a ball? [Hint: Let X_{i} denote the number of tosses required to have a ball land in an $i^{t h}$ bin once $i-1$ bins contain a ball. Find $E\left(X_{i}\right)$ and use the linearity of expectations.]
7. What is the expected number of balls that fall into the first bin when m balls are distributed into n bins uniformly at random?
